
Answers to recommended problems

Chapter 2

2:3   ---

2:4   

2:5   Area = 2π a2(1 − cos
r
a
)

2:7   (a) 

        (b)   dS 2=(μ2+ν2)(d μ2+d ν2)

        (c)     Yes, the curves intersect at right angles. (There is no cross term in the line-element.)

        (d)     μ2+ν2=2 r
 
        (e)      C = 2 π r



Chapter 4

4:9     τEd = 75 years,  τJoe = 51 years,   so difference is 24 years.

4:10   v = 0,36 c

4:13   4,24 m

4:15   Hint: Show first the following relation between the speed V in one of the frames and speed 
          V' in the other frame (choose the relative speed v between the frames in the x-direction):

         V ' 2−c2=(V 2−c2)⋅
(1−v2 /c2)

(1−v V x /c2)2

           Since the factor to the right is positive the result follows.

Chapter 5

5:2       ---

5:4    aα=γv
4( v⃗⋅⃗a , γv

−2 a⃗ + (v⃗⋅⃗a) v⃗ )

5:5    

            Yes, a and u are orthogonal.

5:7     s( τ)=x0+
c2

g
(cosh

g τ
c

− 1)

          t (τ)= c2

g
sinh

g τ
c



5:8   (a) uα=(√2 , √2
2

, √2
2

,0) (in units where  c=1 )

        (b) pα=muα

5:11   Θ '=Θ±θ

5:20    ---

Chapter 6

6:11   M ∼ 0,02 M sun

6:12   Consider two points a and b on the surface of the sphere (which are not antipodal). There is 
one great circle through both points, defining two curves of extremal distance connecting the 
points, one shorter (segment 1) and one longer (segment 2). Segment 1 is also the path of 
shortest distance between a and b. But segment 2 is longer than any nearby path: Displacing 
all points of it in the same direction will make it shorter. Yet it is not the longest path:  
changing it into a zigzag line, or one winding around the sphere several times before reaching 
the other point, makes it longer. 

6:13   τ0=T (observer standing on the ground)                                                                 

τ1=T (1 + g2 T 2

32 c2 ) (observer carrying the clock att constant speed up and down)

τ2=T (1 + g2 T 2

24 c2 ) (observer throwing the clock)                                                   

Note that the longest proper time is registered by the clock that is thrown, since this is the 
“free fall path”.

If the clocks instead would have been carried in the horizontal direction, the longest time 
would have been registered by the clock at rest (as a consequence of just special relativity).

6:14   (a)  Δ τa=P(1 − 3G M

2 R c2 )
          (b)   Δ τb≈P (1 − G M

R c2 )  Note that  Δ τb>Δτa

          (c)     Δ τc=0   So Δ τb>Δτa>Δ τc

         The worldline of the orbit is therefore neither the longest nor the shortest.



(d) If the particle is thrown radially outwards with the right velocity so that it returns in 
coordinate time P, that gives another curve of extremal proper time.

Chapter 7

7:2   t '=t−x  

7:4

7:5    (a)   The two light rays through the point (v , x) is described by dv=0 and 
dv
dx

=2
x

 

         (b)   The null lines are described by   v = const.   and   v(x) = 2 ln x + C

         (c)    The worldlines of particles must lie inside the light cone.

7:6 ds2 = 1

cos2(t '−r ' ) cos2 (t '+r ' )
( −dt ' 2 + dr ' 2 + sin 2 r ' cos2 r ' (dθ 2+sin2θ d ϕ 2))

7:9   The numbers that should replace the question marks in the table of the problem are

40 40



100 80

This means that there are 100 – 80 = 20 second derivatives of the metric that cannot be    
transformed away by some choice of coordinates. These are the local measure of spacetime 
curvature.

7:11 [Hint: write down the 4-velocity along the spaceship trajectory and show that it is timelike.] 

7:12 τ=T

7:17 V = 8π (b2 R + R3

3 )
7:18 (a)   3,05 M

(b)   215 M3

7:20 z(ρ) = 4 M √ ρ
2 M

− 1

7:26 ds2 = −da2 + a2 d χ2 + a2 sinh2 χ d Ω2

Chapter 8

8:3 (a)   L=( (1− 2 M
r )( dt

d σ )
2

− (1− 2 M
r )

−1

( dr
d σ )

2

− r2( d ϕ
d σ )

2

)
1/2

(b)    
d 2 t

d τ 2 = −(1−2 M
r )

−1 2 M

r2

dr
d τ

dt
d τ

         
d 2 r

d τ 2 = −(1−2 M
r ) [ M

r2 ( dt
d τ )

2

− r (d ϕ
d τ )

2

− M

(r−2 M )2 ( dr
d τ )

2 ]



        

                     
d 2ϕ
d τ 2

= −2
r

dr
d τ

d ϕ
d τ

(c)     Γ tr
t =(1− 2 M

r )
−1 M

r2

         Γ tt
r =(1−2 M

r ) M

r2

         Γ rr
r =−(1− 2 M

r )
−1 M

r2

         Γ ϕϕ
r =−(r−2 M )

         Γ ϕ r
ϕ =1

r

8:4 (a)    ---

(b)      − d2 x

d τ 2 − 2Ω dy
d τ

dt
d τ

+ Ω 2 x( dt
d τ )

2

= 0

           − d2 y

d τ 2 + 2Ω dx
d τ

dt
d τ

+ Ω 2 y ( dt
d τ )

2

= 0

           
d 2 z

d τ 2 = 0  

(c)    In the non-relativistic limit  t = τ  and 
dt
d τ

=1 .  

         Hence, for example the x-equation becomes 

        
d 2 x

d t2 = −2Ω dy
dt

+ Ω 2 x

         
         The first term on the right hand side is the Coriolis-force and the second the     
         Centrifugal-force. 

8:5 (See Hartle equation 8.18)

8:6 ---

8:8 ( – z , 0 , x )  and  ( 0 , – z , y )  (overall sign is arbitrary)



8:12 (a)   ---

(b)   
d 2 x

d S 2 = 2
y

dx
dS

dy
dS

        
d2 y

d S 2 = − 1
y ( dx

dS )
2

+ 1
y ( dy

dS )
2

Chapter 9

9:1 Inner and outer coordinate radius is 6M and 10 M, respectively. True distance between the
shells are 4.46 M.

9:5 If  ε were exactly equal to the maximum value of the potential, the particle coming in from 
infinity would spiral closer and closer to the unstable circular orbit at the potential 

maximum (but never quite reach it). If ε were slightly smaller than this, the particle would 

spiral for some time and then return to infinity. If ε were slightly larger the particle, after 
some turns, would end up in the black hole. 

9:6 τ = 2 M
3

(3√12 − 2) ≈ 5,59 M

9:7
v e=2

ve=1

= √10
2

9:8 (a) T≈116 M

(b) T≈88 M

9:9
d ϕ
d τ

= (M

R3 )
1 /2

(1 − 3 M
R )

−1 /2

9:10 v = (M
R )

1 /2

(1 − 2 M
R )

−1 /2

v ISCO=1/2

9:12 v = √ 2 M /R
1 − R2 /b2



9:16 27π M 2

Chapter 12

12:3 ---

12:5 τ = 10√5 M∫0

1 (1
s
−1)

−1 /2

ds = 5√5π M

12:8 Yes, an observer inside a black hole can receive information from the outside. But she 
will not be able to see all points outside, only the ones that are in her backward lightcone. 
(Hint: consider the observer in a Penrose diagram!) 

12:9 The light rays that he fires will not cross his trajectory (as is clear from the Penrose 
diagram).

12:13 (a) An observer who falls into a black hole, feet first, will continue to see her own feet until 
her head hits the singularity. As she passes the horizon, she sees her feet at the same radius. 
As her head hits the singularity she sees her feet at some moments before they hit the 
singularity, so she never sees her own feet hit the singularity.

(b) It is not necessarily dark inside the black hole. Light from the collapsing star could be 
visible, as well as light from the outside.

12:14 τ = 2 M∫0

1 √ x
1− x

dx = π M

12:15
mesc

m
=

(1−2 M /R)1 /2

1+(2 M /R)1 /2

This vanishes as R = 2 M.

12:17 ---

12:21 ---



12:25 An observer in a Kruskal universe could not travel to “the other side”, nor see any light from 
stars in the other side. This is clear from the Penrose diagram on page 274, since light rays in 
this diagram is 45 degrees, and timelike lines is steeper than that. Hence, no timelike or 
lightlike line connects the interior of region II with the interior of region I.

12:26 ---

12:27 ---

Chapter 16

16:1 ---

16:2 (a) z1=σ √ln 2      

(b) Max
δ L
L*

= a
2

16:5 No risk! 

16:8 (a) The ring would maintain its circular shape while oscillating in the x-direction.
(b) No, a similar motion pattern could not be reproduced with a gravitational wave.



Chapter 18

18:5 z =
a(t0)
a(te)

− 1 =
T (te)
T (t0)

− 1 ≈ 1000

18:6 0.96 month

18:7 ---

18:11 (a)   ---

(b)   

(c)   Already at maximum expansion, the observer can receive information from 
anywhere in the shaded region above, that is, from any spatial position. But, of 
course, all spacetime points cannot be seen before the observer hits the Big Crunch 
singularity. 

(d) A light ray can just make it one turn around the universe from Big Bang to Big 
Crunch. So an observer cannot make that round trip. (Remember that χ = 0 and χ = π 
are not the same, but opposite points on the spherical 3-space.)

18:17 ---

18:19 a(t )= 1
H

cosh(Ht )

There is no initial singularity. The universe contracts, reaches its minimum size at t = 0 and 
then expands again.

18:21 ---



18:22 ---

18:23 ---

18:24 (a) ρm=2 ρ v=
Λ

4π

(b) V =2π 2 Λ−3 /2

(c) The static universe is unstable.

18:29 ---

Chapter 20

20:3 a x = sinθ cosϕ a r + r cosθ cosϕ aθ − r sinθ sinϕ aϕ

a y = sinθ sin ϕ a r + r cosθ sin ϕ aθ + r sinθ cosϕ aϕ

a z = cosθ a r − r sinθ aθ

a x = sinθ cosϕ ar + r−1 cosθ cosϕ aθ − r−1 sin−1θ sin ϕ aϕ

a y = sinθ sin ϕ a r + r−1 cosθ sin ϕ aθ + r−1 sin−1θ cosϕ aϕ

a z = cosθ a r − r−1sinθ aθ

20:4 ∇α f = gαβ∇ α f = 1

(2 M )2 ( −(1−2 M
r )

−1

10 t , −(1−2 M
r )4 r , 0 , 0 )

20:5 (a)   ---

(b)      (eτ̂ )α = ( −1 , −( 2 M
R )

1 /2

(1 − 2 M
R )

−1

, 0 , 0 )
          (e r̂)α = ( ( 2 M

R )
1 /2

, (1 − 2 M
R )

−1

, 0 , 0 )
          (eθ̂)α = ( 0 , 0 , r , 0 )

         (eϕ̂)α = ( 0 , 0 , 0 , r sinθ )



(c)     (eτ̂ )α = −(eτ̂ )
α , (er̂)α = (er̂ )

α , (eθ̂)α = (eθ̂)
α , (eϕ̂)α = (eϕ̂)

α

(d)    aα̂ = eα̂⋅a = (eα̂)α⋅aα = ( −3( 4
3
+3( 2

3 )
1/2

) , 3(4
3 ( 2

3 )
1/2

+3) , 0 , 0 )

20:7 ---

20:10 Γ β γ
α = ∂ x 'α

∂ xδ ( ∂
∂ x ' β

∂ xδ

∂ x 'γ )  which is symmetric in β and γ.

20:14 ---

20:15   ---

20:16 κ= −1
4 M

 (with Hartle´s sign convention for κ)

20:17   ---

20:18   ---

20:20   ---

20:26   v=−√ 2 M
r

Chapter 21

21:4 ---

21:5 ---

21:6 ---



21:7 (a)   ---

(b)   (In n dimensions the Riemann tensor has  n2 (n2 – 1) / 12  independent components, 
        that is, 1 component in 2 dim., 6 components in 3 dim. and 20 components in 4 dim.)

21:11 The only non-vanishing components of the Riemann tensor is

R212
1 =R121

2 =−1

y2

This gives that the only non-vanishing components of the Ricci tensor is

R11=R22=
−1

y2

Then
R=gα β Rα β=−2

21:12 (a)   R r̂ θ̂ r̂ θ̂ = Rr̂ ϕ̂ r̂ ϕ̂ = −b2

(b2+r2)2

        Rθ̂ ϕ̂ θ̂ ϕ̂=
b2

(b2+r2)2

(b)   (The result follows from the fact that the Riemann tensor has no time components.)

(c)   Consider the φ-component of the geodetic deviation equation:

       
d 2 χ ϕ̂

d τ 2 = b2

(b2+r2)2
χ ϕ̂ v2γv

2 ∼ v2 for non-relativistic speeds.

(d)   The tidal forces are largest at r = 0:

       
d 2 χ ϕ̂

d τ 2 = v2

b2 χ
ϕ̂ γv

2

        For a comfortable trip b should be large and v should be small.

21:13 ---

21:14   ---

21:18   ---

21:21 ---

21:22 gα β=ηα β−hα β

21:23 Let f '' (u) denote the second derivative of  f  with respect to its argument. Then



δ Rtxtx=−1
2

f ' ' (t−z )

δ R zxzx=−1
2

f ' ' (t− z)

δ Rtyty=+1
2

f ' ' (t−z )

δ R zyzy=+1
2

f ' ' (t− z)

δ Rtxzx=+1
2

f ' ' (t− z)

δ Rtyzy=−1
2

f ' ' (t−z)

21:24 Let Xα be the initial displacement of one of the test particles relative to some origin and χα 
the displacement vector as the wave passes. Then 

χ x(t)=X x (1+ f (t)
2 )

χ y(t)=X y(1− f (t )
2 )

χ z(t )=0                    

Chapter 22

22:4   (torque)=L3 (T xy−T yx )

Note that the moment of inertia is proportional to L5 , which then means that the angular
acceleration is proportional to L–2 .

22:8   ---

22:9   ---

22:10   (a)   A > 0 and  A > – B ,  A > – C ,  A > – D

(b)   No.

22:12   (a)   f = A B C D

(b)   ---

22:13   ---

22:15   T t̂ t̂= −1
16πG

⋅ b2

(b2+r2)2 < 0




